

General Description

The MAX4447/MAX448/MAX449 single-ended-todifferential line drivers are designed for high-speed communications. Using current feedback for greater bandwidth, these devices deliver full-power bandwidths up to 405MHz and feature slew rates as high as 6500V/µs. The MAX4447 has a fixed gain of +2V/V and a small-signal bandwidth of 430MHz. The MAX448/ MAX4449 have small-signal bandwidths of 330MHz and 400MHz, respectively, and are internally compensated for minimum gain configurations of +2V/V and +5V/V, respectively. For greater design flexibility, the MAX4448/MAX4449 allow for variable gain selection using external gain-setting resistors. A low-power enable mode reduces current consumption below 5.5mA and places the outputs in a high-impedance state.

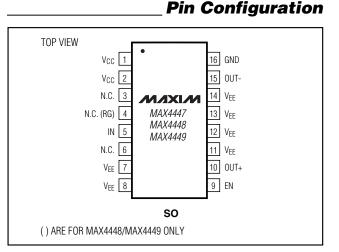
The MAX4447/MAX4448/MAX4449 can deliver differential output swings of $\pm 6.2V$ from $\pm 5V$ supplies with a 50 Ω load. Excellent differential gain/phase and noise specifications make these amplifiers ideal for a wide variety of video and RF signal-processing and transmission applications.

Applications

Differential Line Driver

Single-Ended-to-Differential Conversion

High-Speed Differential Transmitter


Coaxial to Twisted-Pair Converter

Differential Pulse Amplifier

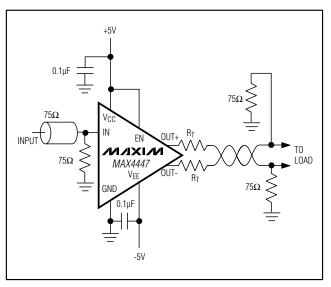
Differential ADC Driver

xDSL Applications

Video and RF Signal Processing and Transmission

_Features

 Small-Signal Bandwidth 430MHz (MAX4447) 330MHz (MAX4448) 400MHz (MAX4449)


6500V/µs Slew Rate (MAX4449)

- 200MHz 0.1dB Gain Flatness (MAX4447)
- ♦ 130mA Output Drive Current
- ♦ +2V/V Internally Fixed Gain (MAX4447)
- ♦ External Gain Selection
 ≥+2V/V (MAX4448)
 ≥+5V/V (MAX4449)
- -78dB SFDR at 100kHz
- Low Differential Gain/Phase: 0.01%/0.02°
- ♦ Ultra-Low Noise: 23nV/√Hz at f_{IN} = 1MHz
- 8ns Settling Time to 0.1%

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4447ESE	-40°C to +85°C	16 Narrow SO
MAX4448ESE	-40°C to +85°C	16 Narrow SO
MAX4449ESE	-40°C to +85°C	16 Narrow SO

Typical Operating Circuit

_ Maxim Integrated Products 1

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V_{CC} to V_{EE}+12V Voltage on IN, EN, OUT+, OUT-, RG(V_{EE} - 0.3V) to (V_{CC} + 0.3V) Output Short-Circuit Duration to GNDIndefinite Continuous Power Dissipation (T_A = +70°C) 16-Pin Narrow SO (derate 20mW/°C above +70°C) ..1600mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +5V, V_{EE} = -5V, V_{EN} \ge 2V, V_{OUT} = V_{OUT+} - V_{OUT-} , R_L = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
Operating Supply Voltage	Vcc	V _{CC} guaranteed by PSRR test		4.5		5.5	V	
Range	VEE	VEE guaranteed by PSRR test		-5.5		-4.5	v	
Input Voltage Range	VIN	Guaranteed by gain-e	error test	-6/Av		+6/Av	V	
Input Offset Voltage	Vos	$V_{IN} = 0$			1.3	50	mV	
Input Offset Voltage Temperature Coefficient	TCvos	VIN = 0			25		µV/°C	
Input Bias Current	IB	$V_{IN} = 0$			7	45	μA	
Input Resistance	RIN	$-3.0V \le V_{IN} \le 3.0V$			50		kΩ	
			MAX4447		2			
Gain	Av	$-6V \le V_{OUT} \le 6V$	MAX4448/MAX4449 (Note 1)	2×	(1+300/F	1+300/R _G)		
		$-6V \le V_{OUT} \le 6V$	MAX4447		0.1	2	%	
Gain Error			MAX4448/MAX4449		-0.3	5	7 /0	
Gain Drift		Vout = 0			-0.002		%/°C	
Gambhit		V001 = 0	MAX4448/MAX4449		0.01		707 C	
Output Voltage Swing	Vout	$R_L = 100\Omega$ between OUT+ and OUT-		±6.3	±7.4		V	
	•001	$R_L = 50\Omega$ between O	UT+ and OUT-	±5.2	±6.2		v	
Output Current Drive	Ιουτ	$R_L = 20\Omega$ between OUT+ and OUT-		90	130		mA	
Output Short-Circuit Current	ISC	Short circuit to GND			140		mA	
Power-Supply Rejection Ratio	PSRR	$V_{S} = \pm 4.5 V$ to $\pm 5.5 V$		53	75		dB	
Output Leakage Current	IOUT(OFF)	$V_{EN} = 0$, $V_{OUT+} = V_{OUT-} = 3.15V \text{ or } -3.15V$			4	30	μA	
EN Logic Low Threshold	VIL					0.8	V	
EN Logic High Threshold	VIH			2			V	
EN Logic Input Low Current	١L	V _{EN} = 0			-2.5	10	μA	
EN Logic Input High Current	Ιн	V _{EN} = 5V			0.8	10	μA	
Quiescent Current	lq	$V_{IN} = 0, V_{EN} \ge V_{IH}$			46	55	mA	
	īQ	$V_{IN} = 0, V_{EN} \le V_{IL}$			3.2	5.5	111/ \	

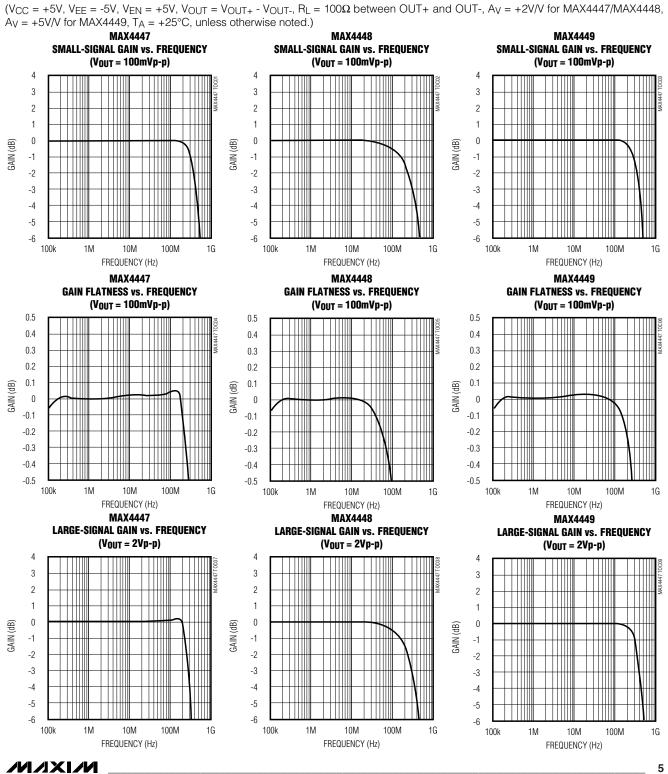
AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 100\Omega$ between OUT+ and OUT-, $A_{VCL} = +2V/V$ for MAX4447/MAX4448, $A_{VCL} = +5V/V$ for MAX4449, $V_{OUT} = V_{OUT} + V_{OUT}$, $T_A = +25^{\circ}C$, unless otherwise noted.)

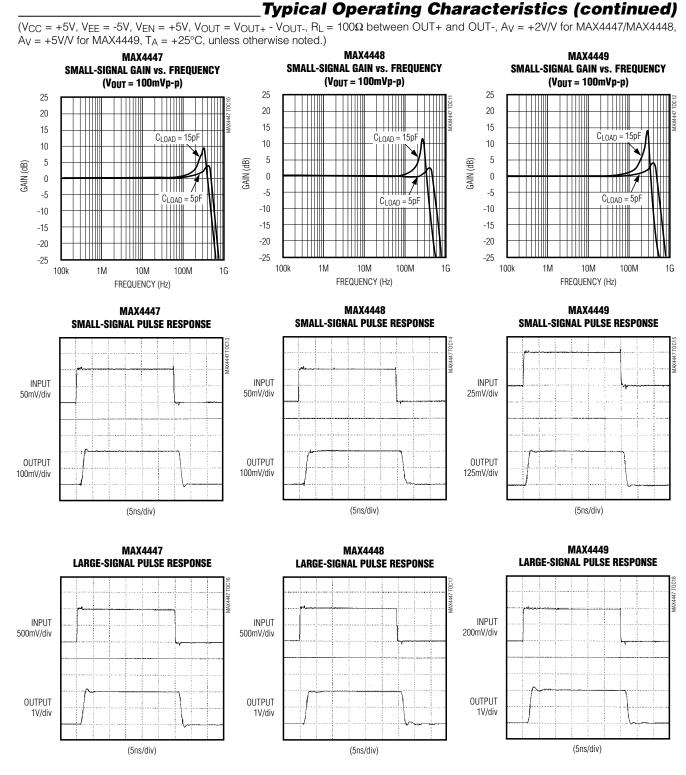
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS		MAX4447		430		
		Vout = 100mVp-p	MAX4448		330		MHz
			MAX4449		400		1
		V _{OUT} = 8Vp-p	MAX4449		250		
		V _{OUT} = 4Vp-p	MAX4447		250		_
			MAX4448		260		
Large-Signal -3dB Bandwidth	BWLS		MAX4449		320		MHz
			MAX4447		285		-
		V _{OUT} = 2Vp-p	MAX4448		310		
			MAX4449		405		
		V _{OUT} = 100mVp-p	MAX4447		200		MHz
0.1dB Gain Flatness			MAX4448		40		
			MAX4449		140		
	SR	V _{OUT} = 8V step	MAX4447		5700		V/µs
			MAX4448		4300		
			MAX4449		6500		
		V _{OUT} = 4V step	MAX4447		3000		
Slew Rate (Note 2)			MAX4448		3000		
			MAX4449		3700		
		V _{OUT} = 2V step	MAX4447		1700		
			MAX4448		1900		
			MAX4449		1800		
Rise Time (Note 2)	tRISE	V _{OUT} = 8V step	MAX4447		670		ps
			MAX4448		1030		
			MAX4449		850		
		V _{OUT} = 4V step	MAX4447		720		
			MAX4448		820		
			MAX4449		660		
		V _{OUT} = 2V step	MAX4447		720		
			MAX4448		520		
			MAX4449		740		

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 100\Omega$ between OUT+ and OUT-, $A_{VCL} = +2V/V$ for MAX4447/MAX4448, $A_{VCL} = +5V/V$ for MAX4449, $V_{OUT} = V_{OUT+} - V_{OUT-}$, $T_A = +25^{\circ}C$, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
	tfall		MAX4447		1100			
		V _{OUT} = 8V step	MAX4448		900		-	
			MAX4449		900			
		V _{OUT} = 4V step	MAX4447		900			
Fall Time (Note 2)			MAX4448		810		ps	
			MAX4449		780			
			MAX4447		800			
		V _{OUT} = 2V step	MAX4448		770			
			MAX4449		660			
Settling Time		Settle to 0.1%, VOUT	r = 2V step		8		ns	
		V _{OUT} = 2Vp-p	$f_{\rm C} = 100 \text{kHz}$		-78		- dBc	
Courieus Free Dunemie Denge			$f_{\rm C} = 5 MHz$		-78			
Spurious-Free Dynamic Range	SFDR		$f_{\rm C} = 20 {\rm MHz}$		-62			
			$f_{\rm C} = 100 {\rm MHz}$		-46			
2nd Harmonic Distortion		V _{OUT} = 2Vp-p	$f_{\rm C} = 100 \text{kHz}$		-78			
			$f_{\rm C} = 5 \rm MHz$		-78		dBc	
			$f_{C} = 20MHz$		-62			
			$f_{\rm C} = 100 \text{MHz}$		-46			
		V _{OUT} = 2Vp-p	$f_{\rm C} = 100 \text{kHz}$		-86		- dBc	
3rd Harmonic Distortion			$f_{C} = 5MHz$		-86			
Sid Harmonic Distortion			$f_{\rm C} = 20 \rm MHz$		-71			
			$f_{C} = 100MHz$		-54			
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$	NTSC, $R_L = 150\Omega$ 0.02			degrees		
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$	NTSC, $R_L = 150\Omega$ 0.01			%		
Input Noise Voltage Density	eN	f = 1MHz (Note 3) 24		nV/√Hz				
Input Noise Current Density	İN	f = 1MHz 1.8		pA/√Hz				
Output Impedance	Z _{OUT±}	f = 10MHz, each output to ground 1.0		Ω				
Enable Time		V _{IN} = 1V, V _{OUT} settle to within 1% 55		ns				
Disable Time		V _{IN} = 1V, V _{OUT} settle to within 1% 0.4		μs				
Power-Up Time	ton	V _{IN} = 1V, V _{OUT} settle to within 1% 0.08			μs			
Power-Down Time	tOFF	V _{IN} = 1V, V _{OUT} settle to within 1% 0.5				μs		

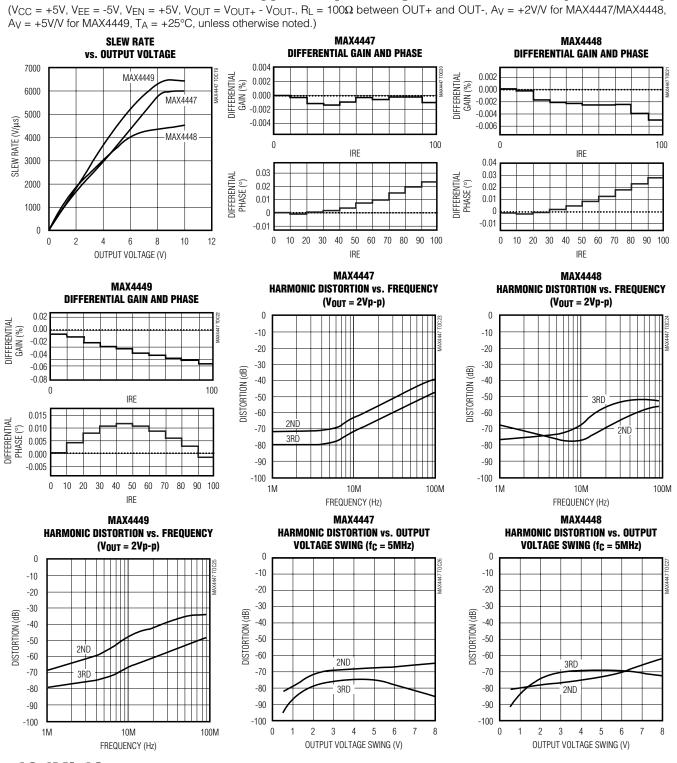
Note 1: RG is the gain resistor. See Figure 1.


Note 2: Input step voltage has <100ps rise (fall) time. Measured at the output from 10% to 90% (90% to 10%) levels.

Note 3: Includes the current noise contribution through the on-die feedback resistor.

Typical Operating Characteristics

WAX4447/MAX4448/MAX4449

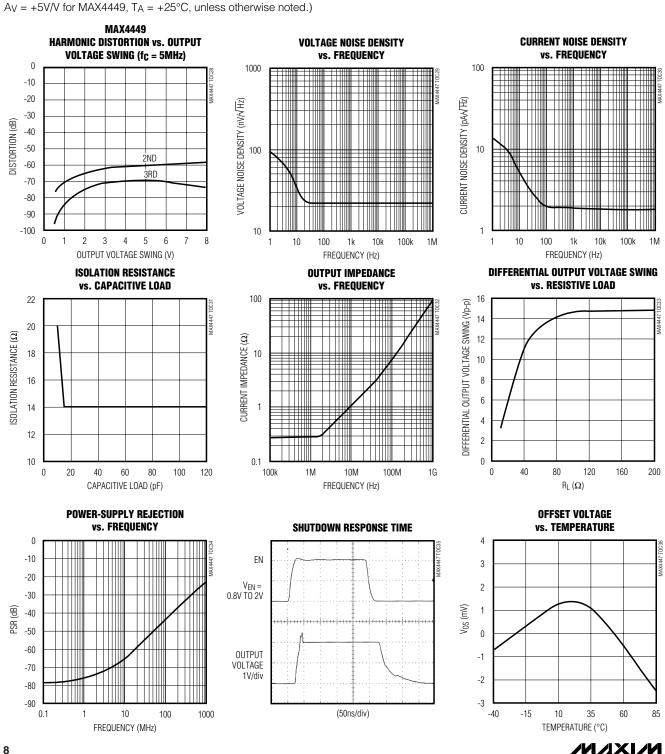


/N/IXI/N

MAX4447/MAX4448/MAX4449

6

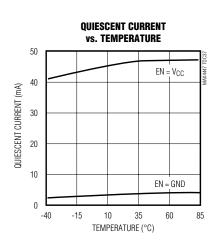
Typical Operating Characteristics (continued)

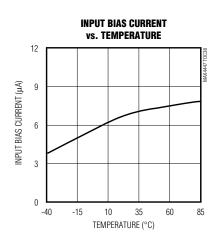

MAX4447/MAX4448/MAX4449

7

(V_{CC} = +5V, V_{EE} = -5V, V_{EN} = +5V, V_{OUT} = V_{OUT} + V_{OUT} -, R_L = 100Ω between OUT+ and OUT-, A_V = +2V/V for MAX4447/MAX4448,

Typical Operating Characteristics (continued)


MAX4447/MAX4448/MAX4449



8

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{EN} = +5V, V_{OUT} = V_{OUT+} - V_{OUT-}, R_L = 100\Omega$ between OUT+ and OUT-, A_V = +2V/V for MAX4447/MAX4448, A_V = +5V/V for MAX4449, T_A = +25°C, unless otherwise noted.)

_Pin Description

Р	IN		
MAX4447	MAX4448 MAX4449	NAME	FUNCTION
1, 2	1, 2	Vcc	Positive Power Supply. Bypass with a 0.1µF capacitor to GND.
3, 4, 6	3, 6	N.C.	No Connection. Not internally connected. Connect to GND for best AC performance.
	4	RG	Gain-Set Resistor. Connect gain-setting resistor from RG to GND.
5	5	IN	Amplifier Noninverting Input
7, 8, 11, 12, 13, 14	7, 8, 11, 12, 13, 14	V _{EE}	Negative Power-Supply Input. Bypass with a 0.1µF capacitor to GND.
9	9	EN	Active-High, TTL-Compatible, Enable Input. Connect to V _{CC} for normal operation. Connect to GND for low-power operation.
10	10	OUT+	Positive Polarity Output
15	15	OUT-	Negative Polarity Output
16	16	GND	Ground

_Detailed Description

The MAX4447/MAX448/MAX449 single-ended-to-differential converters are capable of transmitting highspeed signals such as T1 or xDSL over twisted-pair cable. Excellent gain and phase characteristics, along with low distortion, make these devices suitable for video and RF signal processing and transmission. These converters can be interfaced directly to some of Maxim's wireless products, such as the MAX2450/ MAX2451.

The MAX4447/MAX4448/MAX4449 offer wide small-signal bandwidths of 430MHz, 330MHz, and 400MHz, respectively. Internally trimmed resistors minimize gain errors to under 2% over the full output range. Other features include a high slew rate up to 6500V/µs and high output current (130mA), which allow these amplifiers to be used in numerous high-speed communications applications.

Applications Information

Grounding and Bypassing

Use high-frequency design techniques when designing the PC board for the MAX4447/MAX4448/MAX4449:

- Use a multilayer board with one layer dedicated as the ground plane.
- Do not wire-wrap or use breadboards, due to high inductance.
- Avoid IC sockets, due to high parasitic capacitance and inductance.
- Bypass supplies with 0.1µF. Use surface-mount capacitors to minimize lead inductance.
- Keep signal lines as short and straight as possible. Do not make 90° turns; round all corners. Do not cross signals if possible.
- Ensure that the ground plane is free from voids.

Output Short-Circuit Protection

Output short-circuit protection typically limits the current to 140mA when shorted to GND, thereby keeping the power dissipation under the absolute maximum power dissipating rating. However, when shorted to either supply, the short-circuit current can be significantly higher and cause damage to the device.

Low-Power Enable Mode

The MAX4447/MAX4448/MAX4449 are disabled when EN goes low. This reduces supply current to only 3.2mA and places the outputs into a higher impedance.

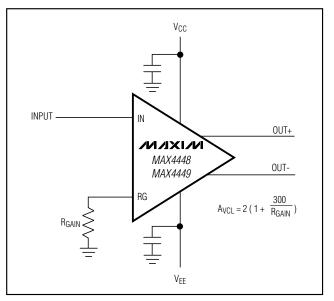


Figure 1. Setting the Amplifier Gain

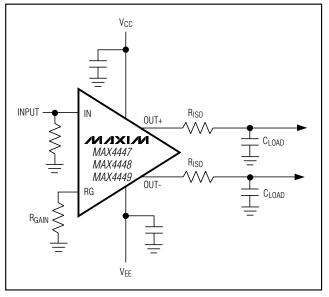


Figure 2. Using an Isolation Resistor for High Capacitive Loads

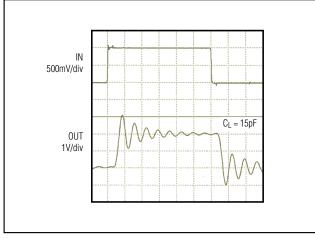


Figure 3. Capacitive-Loaded Output Step Response Without Isolation Resistor

Setting Gain

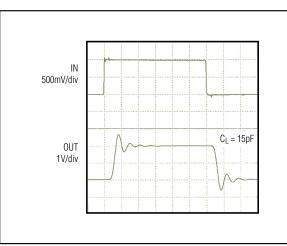
The MAX4448/MAX4449 are stable with minimum gain of +2V/V and +5V/V, respectively. An external resistor, R_{GAIN}, connected between RG and GND sets the gain of these devices. Calculate the gain as follows:

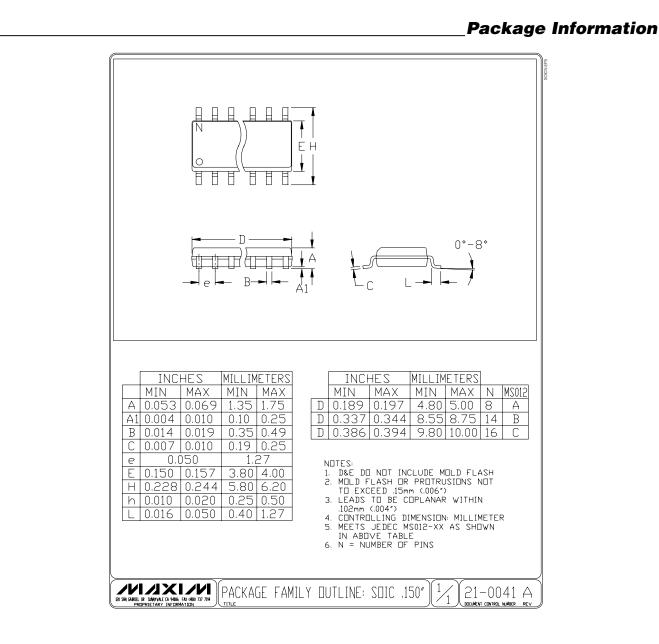
Gain = 2 (1 + 300 / RGAIN)

RGAIN for the MAX4449 must be $\leq 200\Omega$.

Driving Capacitive Loads

The MAX4447/MAX4448/MAX4449 are designed to drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as phase margin is reduced. Adding a small series isolation resistor at the output helps reduce the ringing but slightly increases gain error.




Figure 4. Capacitive-Loaded Output Step Response with 14Ω Isolation Resistor

Twisted-Pair Line Driver

The MAX4447/MAX4448/MAX4449 are well-suited to drive twisted-pair cables. The 24AWG telephone wire widely used produces losses at the higher frequencies. Compensate for these losses by increasing the gain slightly.

Chip Information

TRANSISTOR COUNT: 291

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.